Ensinger 🔗

HDPE (High Density Polyethylene)

Chemical resistant, tough, and low-cost engineering thermoplastic than can be used in a variety of engineering applications including tanks, cutting boards, and light duty guides/rails

General Information

Chemical Designation:	HDPE is an acronym for High Density Polyethylene. Most commonly referred to as HDPE. It is famous for its chemical resistance, toughness, and low cost. It is also FDA, USDA and NSF compliant. It's natural color is white, but is		
POM (Polyoxymethylene)	available in black and other colors at special request. Typical applications include tanks, vessels. Food cutting boards, light duty guides and rails. Not typically used in bearing applications (As UHMW would).		
Fillers:	HDPE is easily cut and (nlastic) welded into custom and standard hoves and tanks for chemical storage and transport		
Unfilled	HDPE is easily machined into custom components with standard boxes and talks to chemical stokes, it has a high coefficient of thermal expansion making it difficult to hold close tolerance dimensions. Its main attributes are impact and		
Color:	chemical resistance.		
White (Opaque) or Black	Ease of manufacturing custom components and its low cost makes HDPE a great choice for many vessel, and		
Specific Gravity:	enclosure applications.		

1.41

Technical Informatior

Specification	Test	Value	Units	
Specific Gravity, 73°F	D792	.95	gm/cm3	
Tensile Strength @ Yield, 73°F	D638	4,000	psi	
Tensile Modulus of Elasticity, 73°F	D638	120,000	psi	
Tensile Elongation (at break), 73°F	D638	600	%	
Flexural Strength, 73°F	D790	210,000	psi	
Flexural Modulus of Elasticity	D790		psi	
Shear Strength, 73°F	D732		psi	
Compressive Strength – Ultimate		500	psi	
Compressive Strength at 2% Deformation	D695		psi	
Compressive Strength at 10% Deformation	D695	1,000	psi	
Deformation Under Load			%	
Compressive Modulus of Elasticity, 73°F	D695			
Compressive Strength ⊥ to Laminate (Modulus)		750	psi	
Compressive Strength ⊥ to Laminate (Yield)		750	psi	
Compressive Strength ⊥ to Laminate (Ultimate)		750	psi	
Hardness, Durometer (Shore "D" scale)	D2240	68		
Hardness, Rockwell (Scale as noted)	D785		Rockwell M	
Izod Impact, Notched @ 73°F	D256 Type A	3.5	ft.lbs/in. of notch	
Coefficient of Friction (Dry vs Steel) Static	PTM55007	.3031		
Coefficient of Friction (Dry vs Steel) Dynamic	PTM55007	.2029		
Maximum Static Bearing Load (P)	PTM55007	750	psi	
Maximum Unlubricated No Load Bearing Velocity (V)	PTM55007		ft/minute	
Maximum Limiting PV (Unlubricated)	PTM55007		psi x ft/min.	
Wear Factor "K" x 10-10	PTM55010		Cubic inmin/ft.lbs.hr	
Sand Wheel Wear/Abrasion Test		90	UHMW=100	
Minimum Mating Surface Hardness			Rockwell (Brinnell)	
Coefficient of Linear Thermal Expansion	E-831(TMA)	6	in/in/°F x 10-5	
Coefficient of Thermal Expansion // to Laminates	E-831(TMA)	6	in/in/°F x 10-5	
Coefficient of Thermal Expansion I to Laminates	E-831(TMA)	6	in/in/°F x 10-5	
Softening Point		180	°F	
Heat Deflection Temperature 264 psi	D648	175	°F	
Embrittlement Temperature		-180	°F Min.	
Continuous Service Temperature in Air		180	°F Max.	
Short Term Service Temperature		200	°F Max.	
Tg-Glass Transition (Amorphous)	D3418		°F	
Melting Point (Crystalline) Peak	D3418	260	°F	
Thermal Conductivity	F433		BTU-in/(hr/ft2°F)	
Dielectric Strength Short Term	D149	45	Volts/mil	
Volume Resistivity	D257		ohm/cm	
Surface Resistivity	D257	<10 x10-14	ohm/cm	
Dielectric Constant, 106 Hz	D150	2.4		
Dissipation Factor, 106 Hz	D150			
Flammability @ 3.1mm(1/8 in.) UL94	UL94	HB	1/8 inch	
Arc Resistance			seconds	
Water Absorption, Immersion 24 Hours	D570 (2)	Nil	%	
Water Absorption, Immersion Saturation	D570 (2)	Nil	%	
Machinability Rating		3	1=easy, 10=difficult	
Rod Diameter Availability (Off the Shelf)	.50	10	inches	
Sheet Thickness Availability (Off the Shelf)	.125	3.5	inches	
Characteristics / Attributes	Excellent Chemical and Impact F	Resistance, Easily Welded & Ma	achined, Low Cost	

Thank you for your interest in our materials. All statements, technical information and recommendations presented are in good faith, based upon tests believed to be reliable and practical field experience. Poly-Tech is not responsible for its accuracy or completeness. It is our recommendation and the customer's responsibility to determine the suitability of any material for any given application.